

Massively Parallel Algorithms Dense Matrix Algorithms

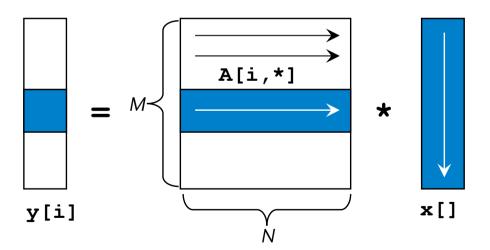
G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

Warming Up: Matrix-Vector Product

Given matrix A, and vector x, compute

$$y = Ax$$

- One of the most important operations in linear algebra algorithms
 - Called SGEMV in BLAS (Basic Linear Algebra Subroutines)
- First approach: one thread per row



• Observation: all threads use the same data from $x \rightarrow$ shared memory

Algorithm for First Attempt


```
multMatrixVector( const float * A, const float * x,
                   const int n columns, float * y )
     shared x cache[ THREADS PER BLOCK ];
   vi = 0.0;
                                        // output of each thread
   int i = threadIdx.x + blockIdx.x * blockDim.x; // row index
   for ( int j = 0; j < n columns; j += THREADS PER BLOCK )</pre>
      // new segment of columns -> fill cache
      x cache[threadIdx.x] = x[ j + threadIdx.x ];
      // now process this segment of columns
      for ( int k = 0; k < THREADS PER BLOCK; k ++ ) {</pre>
         Aij = A[ i*n columns + j+k ];
         yi += Aij*x cache[k];
                                      Block of
                                      threads
                                                                   Block-
   y[i] = yi;
                                                                   size
                                                            *
```

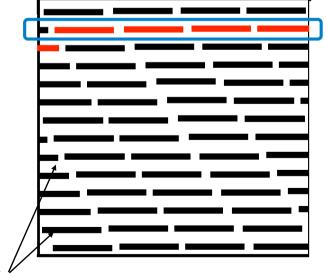
For sake of clarity, we assume M, N = multiple of block-size

Blocksize

- The "natural" (C) way to store matrices is called row major order
 - A_{ij} is stored at memory address $\mathbf{A} + \mathbf{i} * \mathbf{n} + \mathbf{j}$
- For a conventional (sequential) matrix-vector-multiplication algorithm, this is good:

					
0	1	2	3		
4	5	6	7		
8	9	10	11		
12	13	14	15		
16	17	18	19		

```
for ( int i = 0; i < M; i ++ ) {
   float yi = 0.0;
   for ( int j = 0; j < N; j ++ )
      yi += A[i][j] * x[j];
   y[i] = yi;
```

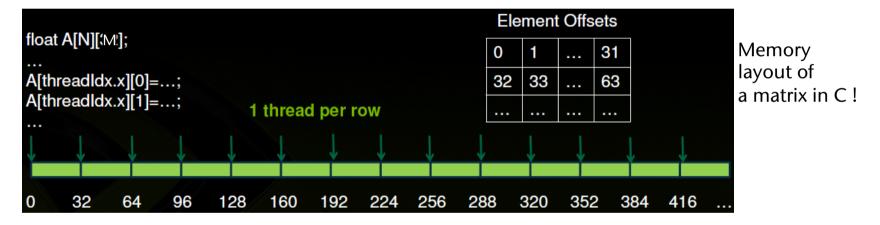


May 2014

2D Array Access Patterns (row major vs column major)

Consider the following piece in a kernel (e.g., matrix × vector):

```
for ( int j = 0; j < blockDim.x; j ++ ) {
   float Aij = A[treadIdx.x][j];
   ... do something with it ...</pre>
```



- Problem: uncoalesced access pattern
 - Elements read on 1st SIMT access: 0, 32, 64, ...
 - Elements read on 2nd SIMT access: 1, 33, 65, ...
 - Also, extra data will be transferred in order to fill the cache line size
- Generally, most natural access pattern for direct port of a C/C++ code!

Transposed 2D Array Access Pattern

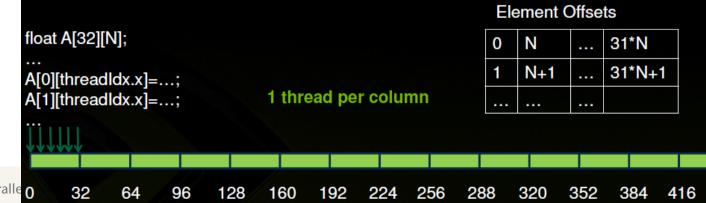
- Column major := store a logical row in a physical column
 - I.e., $A_{00} \to A[0][0]$, $A_{01} \to A[1][0]$, $A_{02} \to A[2][0]$, ... $A_{10} \to A[0][1]$, $A_{11} \to A[1][1]$, $A_{12} \to A[2][1]$, ... $A_{20} \to A[0][2]$, ...

	0	5	10	15
	1	6	11	16
\downarrow	2	7	12	17
	3	8	13	18
	4	9	14	19

- In general: A_{ij} is stored at $\mathbf{A} + \mathbf{i} + \mathbf{j} * \mathbf{n}$
- Transform the code to column major:

```
for ( int j = 0; j < blockDim.x; j ++ ) {
   float Aij = A[j][treadIdx.x];
   ... do something with it ...</pre>
```

- Now, we have coalesced accesses:
 - Elements read on 1st SIMT access: 0, 1, 2, ..., 31
 - Elements read on 2nd SIMT access: 32, 33, ..., 63

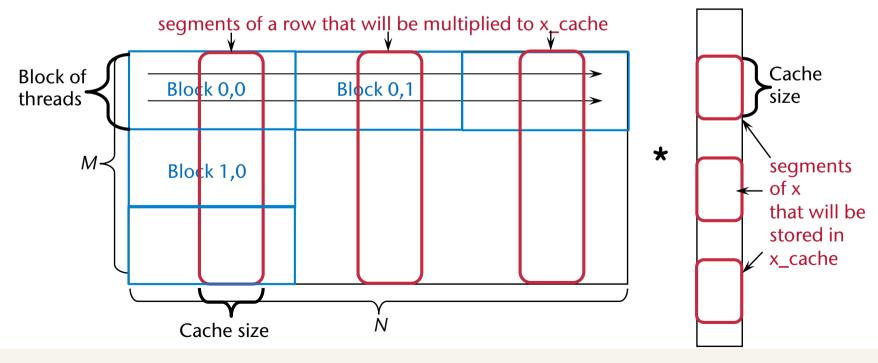


Modified Matrix*Vector Algorithm for Column-Major Matrix Storage

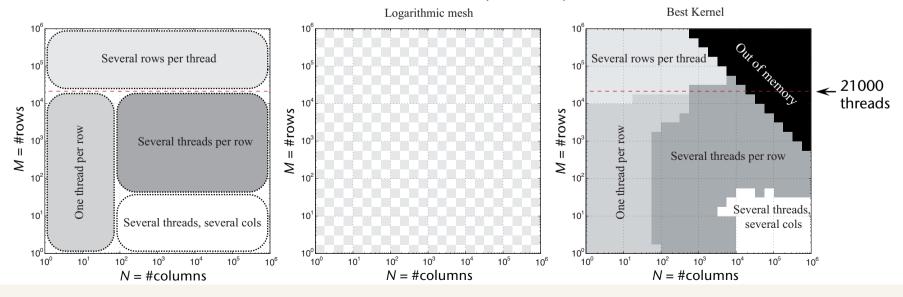

```
multMatrixVector( const float * A, const float * x,
                   const int n columns , float * y )
     shared x cache[ THREADS PER BLOCK ];
   vi = 0.0;
                                          // output of each thread
   int i = threadIdx.x + blockIdx.x * blockDim.x; // row index
   for ( int j = 0; j < n columns; j += THREADS PER BLOCK )</pre>
      // new segment of columns -> fill cache
      x cache[threadIdx.x] = x[ j + threadIdx.x ];
      // now process this segment of columns
      for ( int k = 0; k < THREADS PER BLOCK; k ++ ) {</pre>
         Aij = A[i + (j+k)*n columns];
         yi += Aij * x cache[k];
                                 Note: n columns is still the
   y[i] = yi;
                                 number of columns of the logical matrix,
                                 not the number of columns of the physical matrix!
```


- Note: from now on, we will use row-major notation (just for sake of clarity)!
 - But we will assume that an actual implementation uses column-major!
 - We expect you to transform everything to column-major
 - Start with small matrices that you can check "by hand"
 - Or implement your code first on the CPU and test it there

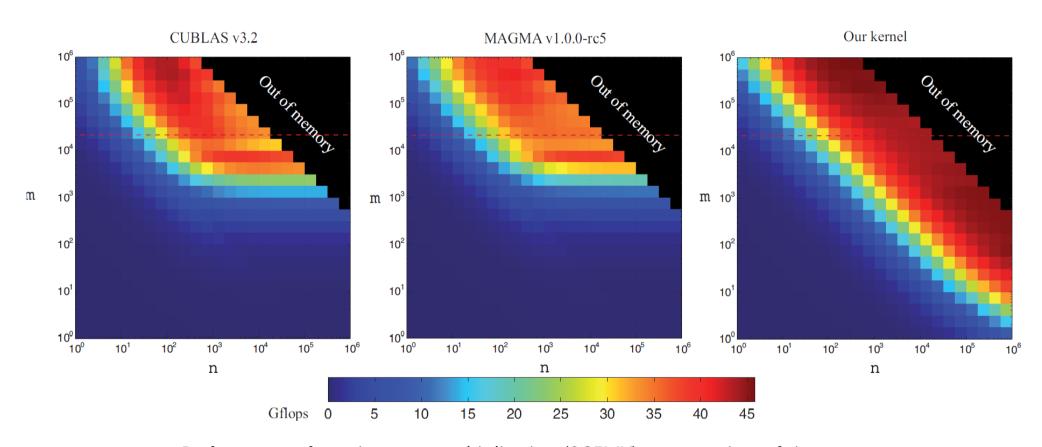
- Do we keep all hardware resources of the GPU busy?
- Assume Fermi [2011] hardware:
 - 14 SMs, each supports 1536 active threads
 - If $M < 21504 = 14 \times 1536 \rightarrow \text{some SMs are idle!}$
- Idea for the case M < 21504 and N "not too small":</p>
 - Use 2D partitioning of our problem/domain



- All possible domain decomposition variants:
 - 1. One thread per row
 - 2. Several threads per row (previous slide)
 - 3. Several rows per thread (one thread computes several y[i]'s at the same time)
 - 4. Several threads, several rows (version 2 & 3 combined)
- Which version is best in which case? (YMMV)



Computational performance that can be achieved [2011]:



Performance of matrix-vector multiplication (SGEMV) over matrices of size $m \times n$

["Fast High-performance Modeling Tools for Many-core Architectures ", Glimberg et al., 2011]

Complexities

- Sequential version: $O(n^2)$ (assuming n=m)
- Parallel version: O(n) parallel time
 - Assuming *n* parallel threads
- Arithmetic intensity:
 - Assume following simplified version:

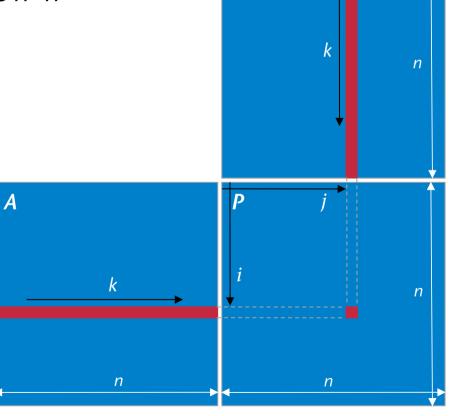
- Number of slow memory references = $f = 2n + n^2$
- Number of arithmetic operations = $o = 2n^2$
- Arithmetic intensity $a = \frac{o}{f} \approx 2 \rightarrow$ memory limited

- Remark: actually, SGEMV in BLAS computes $\mathbf{y} = \alpha A \mathbf{x} + \beta \mathbf{y}$
 - Should be fairly straight-forward to modify our kernels

Matrix-Matrix Multiplication

- Called SGEMM in BLAS
- Given matrices A and B, compute $P = A \cdot B$
- For sake of simplicity, we'll assume
 A and B are square matrices of size n×n
- Sequential algorithm:

```
for i = 1 ... n:
  for j = 1 ... n:
    s = 0.0
  for k = 1 ... n:
    s += A[i][k] * B[k][j]
  P[i][j] = s
```



B

- Complexity: $O(n^3)$
- Arithmetic intensity: $a = \frac{2n^3}{2n^3 + n^2} \approx 1$

```
for i = 1 ... n:
  for j = 1 ... n:
    s = 0
    for k = 1 ... n:
     s += A[i][k] * B[k][j]
    P[i][j] = s
```

- Even worse than matrix-vector mult.!
- Upper bound, w/o proof, at least with iterative = non-recursive algorithms:

$$\hat{a} = \frac{2n^3}{3n^2} \in O(n)$$

Problem: no data re-use!

Naïve Parallel Matrix Multiplication

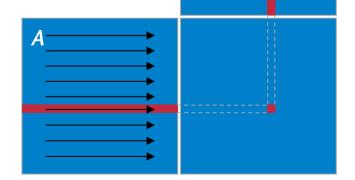
- Approach:
 - Use matrix-vector-multiplication idea
 - Run one thread per row of A:

```
for j = 1 ... n:
    read column j of B into fast memory (B_cache)
    foreach i = 1 ... n run one thread in parallel:
        s = 0.0
        for k = 1 ... n:
        s += A[i][k] * B_cache[k][j]
        P[i][j] = s
```

Arithmetic intensity:

$$a=\frac{2n^3}{n^2+n^3}\approx 2$$

■ Not much better ⊗



B

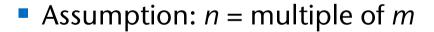
Blocked (Tiled) Matrix Multiplication

Remember linear algebra class: the procedure

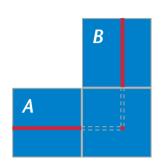
$$p_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

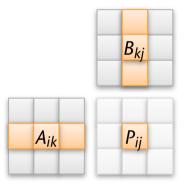
works also for sub-blocks of the matrices

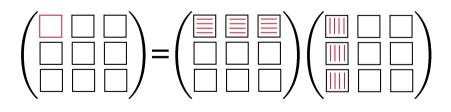
$$P_{ij} = \sum_{k=1}^{n/m} A_{ik} B_{kj}$$



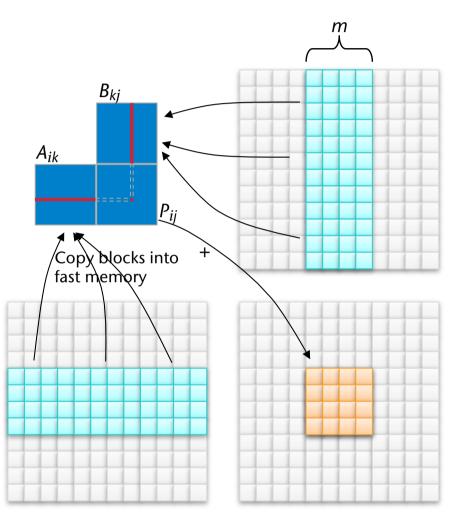
- In production code, you'd have to cope with any matrix size!
 - Lots of nitty-gritty details ...

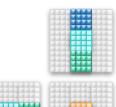






- New approach (2D partitioning):
 - For each sub-matrix P_{ij} , run one block of m^2 threads
 - Each thread in the block computes one p_{ij}
 - The kernel runs in phases
- Each phase consists of:
 - 1. Load blocks A_{ik} , B_{kj} into shared memory
 - Each thread loads one a_{ij} , one b_{ij}
 - 2. Perform "row × column" over block
 - 3. Accumulate partial results





Pseudo code:

```
dim3 threadsPerBlock(m,m);
dim3 n_blocks( n/m, n/m );
multMatrices<<< n_blocks, threadsPerBlock >>>( A, B, P, n );
```


- Previous optimization is called blocking/tiling (copy optimization)
- How should matrices A and B be stored?
 - Remember: at the beginning of each phase: each thread loads one a_{ij} & one b_{ij}
- Store matrices in blocked form, in order to achieve coalesced memory access:

Original matrix (numbers are addresses)

	0	4	8	12
	1	5	9	13
↓	2	6	10	14
	3	7	11	15

Reorganized into blocks

0	2	8	10
1	3	9	11
4	6	12	14
5	7	13	15

- Arithmetic intensity:
 - P consists of b² blocks
 - For each block P_{ij} , we load b blocks of A and b blocks of B
 - Overall, our algorithm loads 2b³ many blocks
 - One block load = m^2 float loads
 - $b = \frac{n}{m}$
 - Overall, our algorithm loads $2\left(\frac{n}{m}\right)^3m^2=2\frac{n^3}{m}$ many floats
 - Therefore, $a = \frac{2n^3}{2\frac{n^3}{m}} = m$
- Consequence: make m large
- Limit: all three blocks P_{ij} , A_{ik} , B_{kj} , must fit in shared memory

Calculating m:

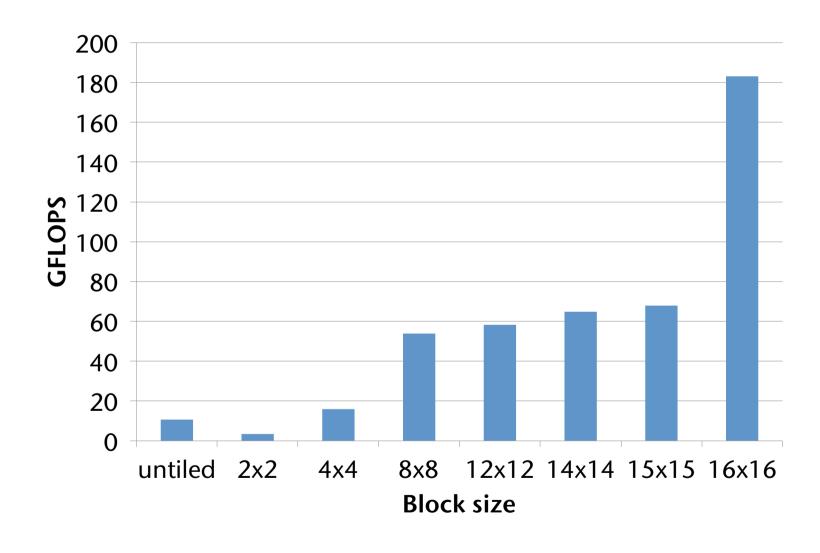
- Assume Kepler-GPU: ~ 2 TFlops/sec = 2·10¹² FLOPs/sec ,
 ~ 200 GB/sec = 200·10⁹ B/sec
- Choose m such that we achieve peak bandwidth & peak FLOPs/sec

$$m = a = \frac{\text{\# FLops}}{\text{\# Loads}} = \frac{\text{\# Flops/sec}}{\text{\# Loads/sec}} = \frac{2 \cdot 10^{12} \text{ Flops/sec}}{\frac{200}{4} \cdot 10^9 \text{ B/sec}} = 40$$

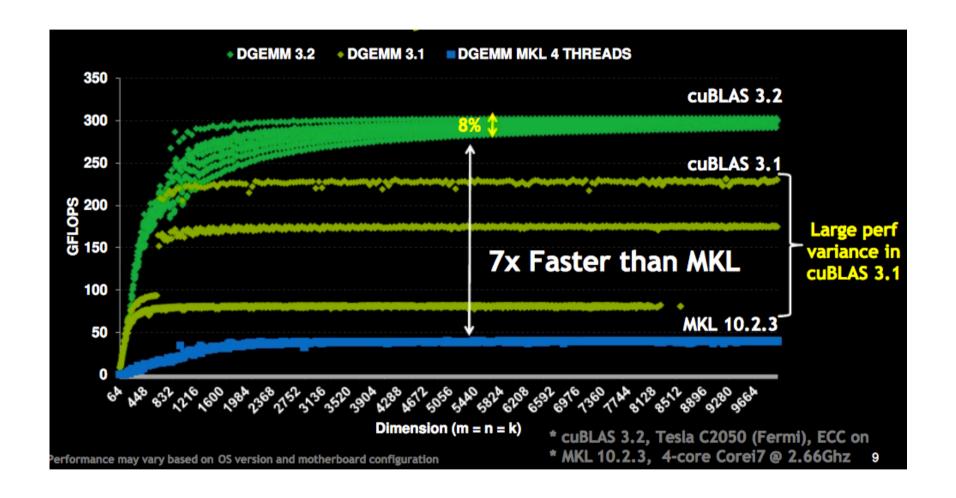
$$1 \text{ Load} = 4 \text{ Bytes}$$

- Note: these are very crude estimations, but good for a starting point where to search for the sweet spot
- Consequence: size of shared memory should be at least $3 \cdot 40^2 \cdot 4$ Bytes = 19.2 kB
 - Otherwise, we would be bandwidth limited

Effects of Block Size



Comparison with MKL (Intel) [2001]



[http://www.scribd.com/doc/47501296/CUDA-3-2-Math-Libraries-Performance]

Limitations / Optimality

- Tiling/blocking only works, if the arithm. operation is associative
- Arithmetic intensity, a, is bounded by size of shared memory, S:

$$a \approx m \leq \sqrt{\frac{S}{3}}$$

- Our algorithm performs $O(\frac{n^3}{\sqrt{S}})$ many load operations
- Note: in a sense, our blocked matrix multiplication algorithm is a way to schedule memory transfers and floating point operations
- Theorem (Hong & Kung, 1981; w/o proof): Any schedule of conventional matrix multiplication must transfer $O(\frac{n^3}{\sqrt{S}})$ many floats between slow and fast memory.
- In this sense, blocked matrix multiplication is optimal

Strassen's Algorithm

- All "traditional" algorithms need $O(n^3)$ FLOPs
- Strassen's algorithm: $O(n^{2.81})$
 - Recursive algorithm!
 - See 2nd semester's course "algorithms and data structures"
- Current world record: $O(n^{2.376})$
- Strassen on the GPU?
 - Probably not worth it (recursion / complex control flow)

Matrix Algorithms

Recap: Strassen's Algorithm Optional

- Task: compute $C = A \cdot B$, $A, B \in \mathbb{R}^{n \times n}$
- Idea : divide-and-conquer
 - Partition A, B, C in 2x2 block matrices

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$
 mit $a_{ii}, b_{ii}, c_{ii} \in \mathbb{R}^{\frac{n}{2} \times \frac{n}{2}}$

Multiplication gives:

$$c_{11} = a_{11}b_{11} + a_{12}b_{21}$$

:
 $c_{22} = a_{21}b_{11} + a_{22}b_{22}$

• Which amounts to 8 matrix multiplications of size $\frac{n}{2} \times \frac{n}{2}$

The trick: compute some (seemingly tedious) intermediate products

$$Q_1 \equiv (a_{11} + a_{22})(b_{11} + b_{22})$$
 $Q_2 \equiv (a_{21} + a_{22})b_{11}$
 $Q_3 \equiv a_{11}(b_{12} - b_{22})$
 $Q_4 \equiv a_{22}(-b_{11} + b_{21})$
 $Q_5 \equiv (a_{11} + a_{12})b_{22}$
 $Q_6 \equiv (-a_{11} + a_{21})(b_{11} + b_{12})$
 $Q_7 \equiv (a_{12} - a_{22})(b_{21} + b_{22})$

• Now we can compute the c_{ij} 's like so:

$$c_{11} = Q_1 + Q_4 - Q_5 + Q_7$$

$$c_{12} = Q_2 + Q_4$$

$$c_{21} = Q_3 + Q_5$$

$$c_{22} = Q_1 + Q_3 - Q_2 + Q_6$$

Optional

Computational complexity:

$$T(n) = 7T\left(\frac{n}{2}\right) + cn^2 \in O(n^{2.8...})$$

- Assumption here: multiplications are the expensive operation
- How would this perform on a GPU?

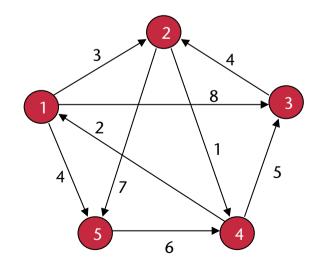
Application: All Pairs Shortest Paths (APSP)

• Given: directed graph G = (V, E) and a distance function

$$\mathsf{dist}: E \to \mathbb{R}$$

where V = set of all vertices (nodes), |V| = n, and E = set of edges

- Goal: compute $n \times n$ matrix $D = d_{ij}$ that stores for each pair (v_i, v_j) the shortest path from v_i to v_j in graph G
- Example:



	1	2	3	4	5
1	0	3	8	4	4
2	3	0	6	1	7
3	7	4	0	5	11
4	2	5	5	0	6
5	8	11	11	6	0

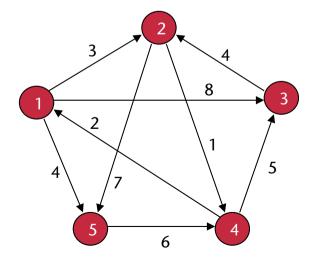
Shortest path matrix D

The Adjacency Matrix Representation of Directed Graphs

- The adjacency matrix A represents the distance function dist
- A is an $n \times n$ matrix $A = (\delta_{ij})$ where

$$\delta_{ij} = \begin{cases} \operatorname{dist}(v_i, v_j), & \text{if } (v_i, v_j) \in E \\ \infty, & \text{if } (v_i, v_j) \notin E \\ 0, & \text{if } i = j \end{cases}$$

Example:



	1	2	3	4	5
1	0	3	8	8	4
2	8	0	8	1	7
3	8	4	0	8	8
4	2	8	5	0	8
5	8	8	8	6	0

Adjacency matrix

The Shortest Paths Property

- We will now extend the simple, edge-based distance function to a distance function dist' on paths
- Define

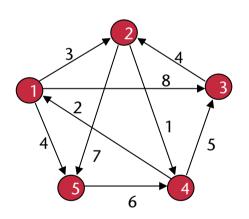
$$\operatorname{dist'}(p_{ij}^1) = egin{cases} 0, & i = j \ \delta_{ij}, & i
eq j \end{cases}$$

- Consider a shortest path p_{ij}^k from v_i to v_j such that $|p_{ij}^k| \le k$, i.e., p_{ij}^k can have most k edges
 - Let (v_l, v_j) be the last edge of path $p^{k_{ij}}$
 - Then, there must be a *shortest* path p_{il}^{k-1} from v_i to v_l (optimal substructure!)
- Therefore,

$$\mathsf{dist'}(p_{ij}^k) = \mathsf{dist'}(p_{il}^{k-1}) + \delta_{lj}$$

A Simple Algorithm for APSP

- Given the adjacency matrix A, compute a series of matrices $D^1=A$, D^2 , ..., D^{n-2} , D^{n-1} where matrix $D^k=\operatorname{dist}'(p_{ij}^k)$ contains lengths of shortest paths in G with at most k edges
- Example:



	1	2	3	4	5
1	0	3	8	8	4
2	8	0	8	1	7
3	8	4	0	8	8
4	2	8	5	0	8
5	8	8	8	6	0

Adjacency matrix

	1	2	3	4	5
1	0	3	8	4	4
2	3	0	6	1	7
3	8	4	0	5	11
4	2	5	5	0	6
5	8	8	11	6	0
Matrix D ²					

• Final matrix D^{n-1} contains the actual shortest paths in G

The algorithm:

```
A = adjacency matrix D^1 = A for k = 2 to n-1: D^k = ExtendPaths(D^{k-1}, A) return D^k
```

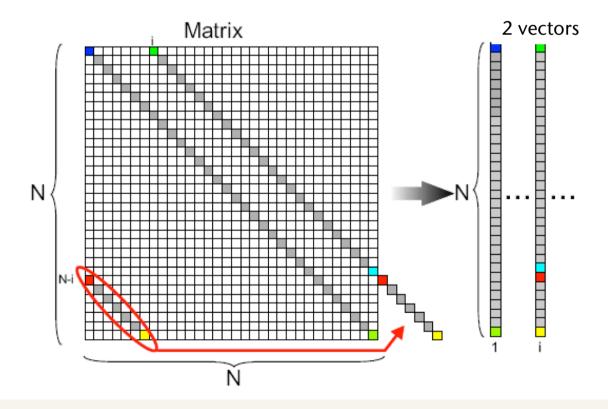
```
\begin{split} & \underline{\text{ExtendPaths}(\ D,\ A\ )} \\ & E = e_{ij} \text{ is an } n \times n \text{ distance matrix} \\ & \text{for } i = 1 \text{ to } n \text{:} \\ & \text{for } j = 1 \text{ to } n \text{:} \\ & e_{ij} = d_{ij} \\ & \text{for } k = 1 \text{ to } n \text{:} \\ & e_{ij} = \min\{e_{ij},\ d_{ik} + \delta_{kj}\} \\ & \text{return } D \end{split}
```

```
\begin{split} & \underline{\text{MatrixMultiply(B, A)}} \\ & C = c_{ij} \text{ is an nxn result matrix} \\ & \text{for i = 1 to n:} \\ & \text{for j = 1 to n:} \\ & c_{ij} = 0 \\ & \text{for k = 1 to n:} \\ & c_{ij} = c_{ij} + a_{ik} \cdot b_{kj} \\ & \text{return C} \end{split}
```

- Notice the similarity with matrix multiplication!
 - We can adapt our fast GPU-based matrix multiplication code to solve the APSP problem quite easily

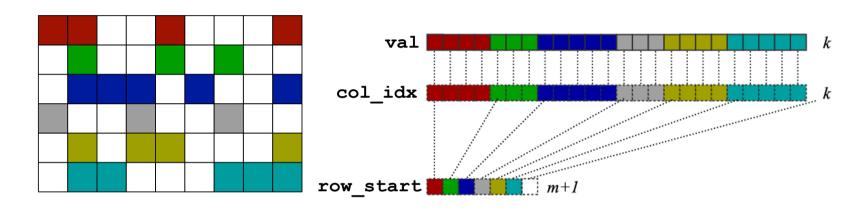
A Word on Sparse Matrices ptional

- Just some remarks
- Frequent case: sparse band matrices
 - Represent matrix as a number of vectors
 - Devise new parallel algorithm (one thread per row is inefficient)



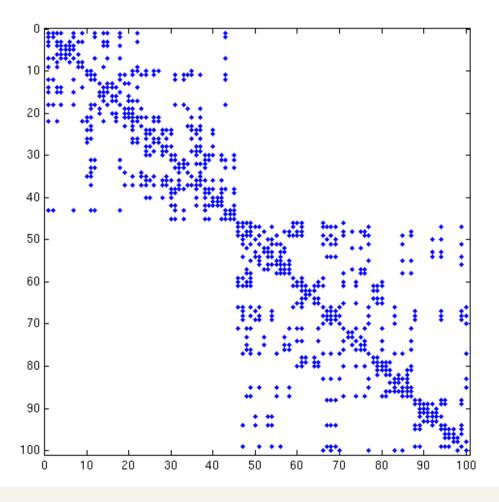
Optional

- "Unstructured" sparse matrices:
 - Most common storage format is Compressed Sparse Row (CSR)



Optional

- Many more kinds of sparse matrices
 - Specialized representation / algorithms for each of them?



Summary

- Simple performance models can aid in understanding
- Two ratios are key:
 - Arithmetic (computational) intensity = $\frac{\# \text{ flops}}{\# \text{ mops}}$
 - "flops" = floating point operations, "mops" = memory operations
 - Machine balance = $\frac{\text{Tflops/sec}}{\text{GB/sec}}$